o.1 PROCESS STATES AND TRANSITIONS 151

« Limit fields restrict the size of a process and the size of a tile it can wrire.
¢ A permission modes field masks mode settings on files the process creats.

This section has described the process state transitions on a logical level. Each
state has physical characteristics managed by the kernel, particularly the virtual
address space of the process. The next section describes a model for memory
management; later sections describe the states and state transitions at a physical
level, focusing on the states “user running,” ‘‘kernel running,” “preempted,” and
“sleep (in memory).” The next chapter describes the states *“created” and
“zombie,” and Chapter 8 describes the state “ready to run in memory.” Chapter 9
discusses the two “swap” states and demand paging.

6.2 LAYOUT OF SYSTEM MEMORY

Assume that the physical memory of a machine is addressable, starting at byte
offset 0 and going up to a byte offset equal to the amount of memory on the
machine. As outlined in Chapter 2, a process on the UNIX system consists of
three logical sections: text, data, and stack. (Shared memory, discussed in
Chapter 11, should be considered part of the data section tor purposes of this
discussion.) The text section contains the set of instructions the machine executes
for the process; addresses in the text section include text addresses (for branch
instructions or subroutine calls), data addresses (for access to global data
variables), or stack addresses (for access to data structures local to a subroutine).
If the machine were to treat the generated addresses as address locations in
physical memory, it would be impossible for two processes to execute concurrently
if their set of generated addresses overlapped. The compiler could generate
addresses that did not overlap between programs, but such a procedure is
impractical for general-purpose computers because the amount of memory on a
machine is finite and the set of all programs that could be compiled is infinite.
Even if the compiler used heuristics to try to avoid unnecessary overlap of
generated addresses, the implementation would be inflexible and therefore
undesirable.

The compiler therefore generates addresses for a virtual address space with a
given address range, and the machine’s memory management unit translates the
virtual addresses generated by the compiler into address locations in physical
memory. The compiler does not have to know where in memory the kernel will
later load the program for execution. In fact, several copies of a program can
cocxist in memory: All execute using the same virtual addresses but reference
different physical addresses. The subsystems of the kernel and the hardware that
cooperate to translatc virtual to physical addresses comprise the memory
management subsystem.

152 THE STRUCTURE OF PROCESSES

6.2.1 Regions

The System V kernel divides the virtual address space of a process into logical
regions. A region is a contiguous area of the virtual address space of a process that
can be treated as a distinct object to be shared or protected. Thus text, data, and
stack usually form separate regions of a process. Several processes can share a
region. For instance, several processes may execute the same program, and it is
natural that they share one copy of the text region. Similarly, several processes
may cooperate to share a common shared-memory region.

The kernel contains a region table and allocates an entry from the table for
each-active region in the system. Section 6.5 will describe the fields of the region
table and region operations in greater detail, but for now, assume the region table
contains the information to determine where its contents are located in physical
memory. Each process contains a private per process region table, called a pregion
for short. Pregion entries may exist in the process table, the u area, or in a
separately allocated area of memory, dependent on the implementation, but for
simplicity, assume that they are part of the process table entry. Each pregion entry
points to a region table entry and contains the starting virtual address of the region
in the process. Shared regions may have different virtual addresses in each process.
The pregion entry also contains a permission field that indicates the type of access
allowed the process: read-only, read-write, or read-execute. The pregion and the
region structure are analogous to the file table and the inode structure in the file
system: Several processes can share parts of their address space via a region, much
as they can share access to a file via an inode; each process accesses the region via
a private pregion entry, much as it accesses the inode via private entries in its user
file descriptor table and the kernel file table.

Figure 6.2 depicts two processes, A and B, showing their regions, pregions, and
the virtual addresses where the regions are connected. The processes share text
region ’a’ at virtual addresses 8K and 4K, respectively. If process A reads memory
location 8K and process B reads memory location 4K, they read the identical
memory location in region 'a’. The data regions and stack regions of the two
processes are private.

The concept of the region is independent of the memory management policies
implemented by the operating system. Memory management policy refers to the
actions the kernel takes to insure that processes share main memory fairly. For
example, the two memory management policies considered in Chapter 9 are process
swapping and demand paging. The concept of the region is also independent of the
memory management implementation: whether memory is divided into pages or
- segments, for example. To lay the foundation for the description of demand paging
algorithms in Chapter 9, the discussion here assumes a memory architecture based
on pages, but it does not assume that the memory management policy is based on
demand paging algorithms.

6.2 LAYOUT OF SYSTEM MEMORY 153

Per Proc Region Tables
(Virtual Addresses)

Text] 8K
Process b
A Data] 16K

Regions

Stack| 32K

Text! 4K
Process
B Data| 8K

Stackl 32K

Figure 6.2. Processes and Regions

6.2.2 Pages and Page Tables

This section defines the memory model that will be used throughout this book, but
it is not specific to the UNIX system. In a memory management architecture
based on pages, the memory management hardware divides physical memory into a
set of equal-sized blocks called pages. Typical page sizes range from 512 bytes to
4K bytes and are defined by the hardware. Every addressable location in memory
is contained in a page and, consequently, every memory location can be addressed
by a

(page number, byte offset in page)

pair. For example, if a machmc has 23 bytes of physical memory and a page size
of 1K bytes, it has 2% pages of physical memory; every 32-bit address can be
treated as a pair consisting of a 22-bit page number and a 10-bit offset into the
page (Figure 6.3).

When the kernel assigns physical pages of memory to a region, it need not
assign the pages contiguously or in a particular order. The purpose of paged
memory is to allow greater flexibility in assigning physical memory, analogous to
the assignment of disk blocks to files in a file system. Just as the kernel assigns
blocks to a file to increase flexibility and to reduce the amount of unused space
caused by block fragmentation, so it assigns pages of memory to a region.

154 THE STRUCTURE OF PROCESSES

Hexadecimal Address 58432
Binary 0101 1000 0100 0011 0010
Page Number, Page Offset 01 0110 0001 00 0011 0010

-

In Hexadecimal 161 32

Figure 6.3. Addressing Physical Memory as Pages

Logical Page Number Physical Page Number

0 177
1 54
2 209
3 17

Figure 6.4. Mapping of Logical to Physical Page Numbers

The kernel correlates the virtual addresses of a region to their physical machine
addresses by mapping the logical page numbers in the region to physical page
numbers on the machine, as shown in Figure 6.4. Since a region is a contiguous
range of virtual addresses in a program, the logical page number is the index into
an array of physical page numbers. The region table entry contains a pointer to a
table of physical page numbers called a page table. Page table entries may also
contain machine-dependent information such as permission bits to allow reading or
writing of the page. The kernel stores page tables in memory and accesses them
like all other kernel data structures.

Figure 6.5 shows a sample mapping of a process into physical memory. Assume
that the size of a page is 1K bytes, and suppose the process wants to access virtual
memory address 68,432. The pregion entries show that the virtual address is in the
stack region starting at virtual address 64K (65,536 in decimal), assuming the
direction of stack growth is towards higher addresses. Subtracting, address 68,432
is at byte offset 2896 in the region. Since each page consists of 1K bytes, the
address is contained at byte offset 84 8 in page 2 (counting from 0) of the region,
located at physical address 986K. Section 6.5.5 (loading a region) discusses the
meaning of the page table entry marked “empty.”

Modern machines use a variety of hardware registers and caches to speed up
the address translation procedure just described, because the memory references
and address calculations would otherwise be too slow. When resuming the
execution of a process, the kernel therefore informs the memory management

6.2 LAYOUT OF SYSTEM MEMORY 158

Per Proc Region Table

Page Tables (Physical Addresses)
text 8K
data | 32K empty
stack | g4K 137K
852K
Virtual Addresses 87K 764K
552K 433K
727K 333K
541K 941K :
783K 1096K
986K 2001K

897K

Figure 6.5. Mapping Virtual Addresses to Physical Addresses

hardware where the page tables and physical memory of the process reside by
loading the appropriate registers. Since such operations are machine dependent
and vary from one implementation to another, this text will not discuss them. The
exercises at the end of the chapter cite specific machine architectures.

Let us use the following simple memory model in discussing memory
management. Memory is organized in pages of 1K bytes, accessed via page tables
as described earlier. The system contains a set of memory management register
triples (assume a large supply), such that the first register in the triple contains the
address of a page table in physical memory, the second register contains the first
virtual address mapped via the triple, and the third register contains control
information such as the number of pages in the page table and page access
permissions (read-only, read-write). This model corresponds to the region model,
just described. When the kernel prepares a process for execution, it loads the set of
memory management register triples with the corresponding data stored in the
pregion entries.

156 THE STRUCTURE OF PROCESSES

If a process addresses memory locations outside its virtual address space, the
hardware causes an exception condition. For example, if the size of the text region
in Figure 6.5 is 16K bytes and a process accesses virtual address 26K, the hardware
will cause an exception that the operating system handles. Similarly, if a process
tries to access memory without proper permissions, such as writing an address in its
write-protected text region, the hardware will cause an exception. In both these
examples, the process would normally exir; the next chapter provides more detail.

6.2.3 Layout of the Kernel

Although the kernel executes in the context of a process, the virtual memory
mapping associated with the kernel is independent of all processes. The code and
data for the kernel reside in the system permanently, and all processes share it.
When the system is brought into service (booted), it loads the kernel code into
memory and sets up the necessary tables and registers to map its virtual addresses
into physical memory addresses. The kernel page tables are analogous to the page
tables associated with a process, and the mechanisms used to map kernel virtual
addresses are similar to those used for user addresses. In many machines, the
virtual address space of a process is divided into several classes, including system
and user, and each class has its own page tables. When executing in kernel mode,
the system permits access to kernel addresses, but it prohibits such access when
executing in user mode. Thus, when changing mode from user to kernel as a result
of an interrupt or system call, the operating system collaborates with the hardware
to permit kernel address references, and when changing mode back to user, the
operating system and hardware prohibit such references. Other machines change
the virtual address translation by loading special registers when executing in kernel
mode.

Figure 6.6 gives an example of the virtual addresses of the kernel and a process,
where kernel virtual addresses range from 0 to 4M—1 and user virtual addresses
range from 4M up. There are two sets of memory management triples, one for
kernel addresses and one for user addresses, and each triple points to a page table
that contains the physical page numbers corresponding to the virtual page
addresses. The system allows address references via the kernel register triples only
when in kernel mode; hence, switching mode between kernel and user requires only
that the system permit or deny address references via the kernel register triples.

Some system implementations load the kernel into memory such that most
kernel virtual addresses are identical to their physical addresses and the virtual to
physical memory map of those addresses is the identity function. However, the
treatment of the u area requires virtual to physical address mapping in the kernel.

6.2 A LAYOUT OF SYSTEM MEMORY 157

Address of ;. No. of Pages
Page Table Virtual Addr in Page Table
Kernel Reg Triple 1 \ 0
Kernel Reg Triple 2 ~\\ IM

Kernel Reg Triple 3 % M
aM

User Reg Triple 1 /

User Reg Triple 2 / \ \
<
User Reg Trifle 3 /l \ \\

856K 747K 556K 0K 128K | | 256K
917K 950K 997K 4K 97K 292K
564K 333K 458K 3K 135K 304K
444K : 632K 17K 139K 279K
Process (Region) Page Tables Kernel Page Tables

Figure 6.6. Changing Mode from User to Kernel

6.2.4 The U Area

Every process has a private u area, yet the kernel accesses it as if there were only
one u area in the system, that of the running process. The kernel changes its
virtual address translation map according to the executing process to access the
correct u area. When compiling the operating system, the loader assigns the
variable u, the name of the u area, a fixed virtual address. The value of the u area
virtual address is known to other parts of the kernel, in particular, the module that
does the context switch (Section 6.4.3). The kernel knows where in its memory
management tables the virtual address translation for the u area is done, and it can
dynamically change the address mapping of the u area to another physical address.
The two physical addresses represent the u areas of two processes, but the kernel

158 THE STRUCTURE OF PROCESSES

accesses them via the same virtual address.

A process can access its u area when it executes in kernel mode but not when it
executes in user mode. Because the kernel can access only one u area at a time by
its virtual address, the u area partially defines the context of the process that is
running on the system. When the kernel schedules a process for execution, it finds
the corresponding u area in physical memory and makes it accessible by its virtual
address.

Address of Virtual Addr No. of Pages
Page Table in Process in Page Table

Reg Triple 1

Reg Triple 2

(U Area) Reg Triple 3 ~_ 2M 4

Page Tables for U.Areas

114K 843K 1879K 184K
708K 794K 290K 176K
143K 361K 450K 209K
565K 847K 770k 477K
Proc A Proc B Proc C Proc D

Figure 6.7. Memory Map of U Area in the Kernel

For example, suppose the u area is 4K bytes long and resides at kernel virtual
address 2M. Figure 6.7 shows a sample memory layout, where the first two
register triples refer to kernel text and data (the addresses and pointers are not
shown), and the third triple refers to the u area for process D. If the kernel wants
to access the u area of process A, it copies the appropriate page table information
for the u area into the third register triple. At any instant, the third kernel register
triple refers to the u area of the currently running process, but the kernel can refer
to the u area of another process by overwriting the entries for the u area page table
address with a new address. The entries for register triples 1 and 2 do not change
for the kernel, because all processes share kernel text and data.

6.3 THE CONTEXT OF A PROCESS 159

6.3 THE CONTEXT OF A PROCESS

The context of a process consists of the contents of its (user) address space and the
contents of hardware registers and kernel data structures that relate to the process.
Formally, the context of a process is the union of its user-level context, register
context, and system-level context.' The user-level context consists of the process
text, data, user stack, and shared memory that occupy the virtual address space of
the process. Parts of the virtual address space of a process that periodically do not
reside in main memory because of swapping or paging still constitute a part of the
user-level context.
The register context consists of the following components.

e The program counter specifies the address of the next instruction the CPU will
execute; the address is a virtual address in kernel or in user memory space.

e The processor status register (PS) specifies the hardware status of the machine
as it relates to the process. For example, the PS usually contains subfields to
indicate that the result of a recent computation resulted in a zero, positive or
negative result, or that a register overflowed and a carry bit is set, and so on.
The operations that caused the PS to be set were done for a particular process,
hence the PS contains the hardware status of thc machine as it relates to the
process. Other important subfields typically found in the PS are those that
indicate the current processor execution level (for interrupts) and the current
and most recent modes of execution (such as kernel, user). The subfield that
shows the current execution mode determines whether a process can execute
privileged instructions and wheiher it can access kernel address space.

o The stack pointer contains the current address of the next entry in the kernel or
user stack, determined by the mode of execution. Machine architectures dictate
whether the stack pointer points to the next free entry on the stack or to the last
used entry. Similarly, the machine dictates the direction of stack growth
toward numerically higher or lower addresses, but such issues are immaterial
for purposes of this discussion.

e The general-purpose registers contain data generated by the process during its
exccution. To simplify the following discussion, let us distinguish two general
purpose registers, register 0 and register 1, for additional use in transmitting
information between processes and the kernel.

The system-level context of a process has a “static part” (first three items of <ne
following list) and a “dynamic part” (last two items). A process has one static
part of the system-level context throughout its lifetime, but it can have a variable
number of dynamic parts. The dynamic part of the system-level context should be

1. The terms user-level context, register context, system-level context, and context layers used in this
section are the author’s terminology.

160 THE STRUCTURE OF PROCESSES

viewed as a stack of context layers that the kernel pushes and pops on occurrence
of various events. The system-level context consists of the following components.

® The process table entry of a process defines the state of a process, as described
in Section 6.1, and contains control information that is always accessible to the
kernel. ;

® The u area of a process contains process control information that need be
accessed only in the context of the process. General control parameters such as
the process priority are stored in the process table because they must - be
accessed outside the process context.

® Pregion entries, region tables and page tables, define the mapping from virtual
to physical addresses and therefore define the text, data, stack, and other
regions of a process. If several processes share common regions, the regions are
considered part of the context of each process, because each process manipulates
the regions independently. Part of the memory management task is to indjcate
which parts of the virtual address space of a process are not memory resident.

e The kernel stack contains the stack frames of kernel procedures as a process
executes in kernel mode. Although all processes execute the identical kernel-
code, they have a private copy of the kernel stack that specifies their particular
invocation of the kernel functions. For jnstance, one process may invoke the
creat system call and go to sleep waiting for the kernel to assign a‘new inode,
‘and another process may invoke the read system call and g0 to sleep awaiting
the transfer of data from disk to memory. Both processes execute kernel
functions, but they have separate stacks that contain their private function call
sequence. The kernel must be able to recover the contents of the kernel stack
and the position of the stack pointer to resume execution of a process in kernel
mode. System implementations frequently place the kernel stack in the process
u area, but it is logically independent and can exist in an independently
allocated area of memory. The kernel stack is empty when the process executes
in user mode.

® The dynamic part of the system-level context of a process consists of a set of
layers, visualized as a last-in-first-out stack. Each system-level context layer
contains the necessary information tu recover the previous layer, including the
register context of the previous level.

The kernel pushes a context layer when an interrupt occurs, when a process
makes a system call, ofr when a process does a context switch. It pops a context
layer when the kernel returns from handling an interrupt, when a process returns to
user mode after the kernel completes execution of a system call, or when a process
does a context switch. The context switch thus entails a push and a pop of a
system-level context layer: The kernel pushes the context layer of the old process
and"pops the context layer of the new process. The process table entry stores the
necessary information to recover the current context layer.

Figure 6.8 depicts the components that form the context of a process. The left
side of the figure shows the static portion of the context. It consists of the user-

6.3 THE CONTEXT OF A PROCESS 161

. . Dynamic Portion of Context
Static Portion of Context y i

User Level Context

Process Text
Data »
Stack Layer3 Kernel Stack for Layer 3
Shared Data Saved Register Context
logical fointer for Layer 2
to curgént context
ayer Kernel Stack for Layer 2
Static Part of
Layer 2

Saved Register Context
for Layer 1

System Level Context

SN

Process Table Entry
Kernel Stack for Layer 1

U Area
Per Process Region Table Layer 1 | gaved Register Context
for Layer 0
Kernel
Context _—
Layer 0 (User Level)

Figure 6.8. Components of the Context of a Process

level context, containing the process text (instructions), data, stack, and shared
memory (if the process has any), and the static part of the system-level context,
containing the process table entry, the u area, and the pregion entries (the virtual
address mapping information for the user-level context). The right side of the
figure shows the dynamic portion of the context. It consists of several stack frames,
where each frame contains the saved register context of the previous layer, and the
kernel stack as the kernel executes in that layer. System context layer O is a
dummy layer that represents the user-level context; growth of the stack here is in
the user address space, and the kernel stack is null. The arrow pointing from the
static part of the system-level context to the top layer of the dynamic portion of the
cantext represents the logical information stored in the process. table entry to enable
the kernel to recover the current context layer of the process.

A process runs within its context or, more precisely, within its. current context
layer. The number of context layers is bounded by the number of interrupt levels
the machine supports. For instance, if a machine supports different interrupt levels
for software interrupts, terminals, disks, all other peripherals, and the clock, it

162 THE STRUCTURE OF PROCESSES

supports S interrupt levels, and hence, a process can contain at most 7 context
layers: 1 for each interrupt level, 1 for system calls, and 1 for user-level. The 7
layers are sufficient to hold all context layers even if interrupts occur in the “worst”
possible sequence, because an interrupt of a given level is blocked (that is, the CPU
defers it) while the kernel handles interrupts of that level or higher.

Although the kernel always executes in the context of some process, the logical
function that it executes does not necessarily pertain to that process. For instance,
if a disk drive interrupts the machine because it has returned data, it interrupts the
running process and the kernel executes the interrupt handler in a new system-level
context layer of the executing process, even though the data belongs to another
process. Interrupt handlers do not generally access or modify the static parts of the
process context, since those parts have nothing to do with the interrupt.

6.4 SAVING THE CONTEXT OF A PROCESS

As observed in previous sections, the kernel saves the context of a process whenever
it pushes a new system context layer. In particular, this happens when the system
receives an interrupt, when a process executes a system call, or when the kernel
doe: a context switch. This section considers each case in detail.

6.4.1 Interrupts and Exceptions

The system is responsible for handling interrupts, whether they result from
hardware (such as from the clock or from peripheral devices), from a programmed
interrupt (execution of instructions designed to cause *‘software interrupts”), or
from exceptions (such as page faults). If the CPU is executing at a lower processor
execution level than the level of the interrupt, it accepts the interrupt before
decoding the next instruction and raises the processor execution level, so that no
other interrupts of that level (or lower) can happen while it handles the current
interrupt, preserving the integrity of kernel data structures (see Section 2.2.2). The
kernel handles the interrupt with the following sequence of operations:

1. It saves the current register context of the executing process and creates
(pushes) a new context layer.

2. It determines the *“source” or cause of the interrupt, identifying the type of
interrupt (such as clock or disk) and the unit number of the interrupt, if
applicable (such as which disk drive caused the interrupt). When the system
receives an interrupt, it gets a number from the machine that it uses as an
offset into a table, commonly called an interrupt vector. The contents of
interrupt vectors vary from machine to machine, but they usually contain the
address of the interrupt handler for the corresponding interrupt source and a
way of finding a parameter for the interrupt handler. For example, consider
the table of interrupt handlers in Figure 6.9. If a terminal interrupts the
system, the kernel gets interrupt number 2 from the hardware and invokes the

